Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(12): e0032723, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37943036

RESUMO

Genome sequencing of highly virulent Salmonella enterica subsp. enterica serovar Javiana strain FARPER-220 (ST-1674) isolated from broiler chickens in Peru revealed multiple virulence factors, antibiotic resistance genes, and invasion-related subcategories. The results provide insights into the potential importance of this strain in causing infections in various animals.

2.
Tuberculosis (Edinb) ; 141: 102375, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429152

RESUMO

To better understand the interaction between the host and the Mycobacterium tuberculosis pathogen, it is critical to identify its potential secreted proteins. While various experimental methods have been successful in identifying proteins under specific culture conditions, they have not provided a comprehensive characterisation of the secreted proteome. We utilized a combination of bioinformatics servers and in-house software to identify all potentially secreted proteins from six mycobacterial genomes through the three secretion systems: SEC, TAT, and T7SS. The results are presented in a database that can be crossed referenced to selected proteomics and transcriptomics studies (https://secretomyc.cbs.cnrs.fr). In addition, thanks to the recent availability of Alphafold models, we developed a tool in order to identify the structural homologues among the mycobacterial genomes.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteoma , Transporte Biológico , Internet
3.
PLoS One ; 17(8): e0269823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998134

RESUMO

COVID-19 pandemic has accelerated the development of vaccines against its etiologic agent, SARS-CoV-2. However, the emergence of new variants of the virus lead to the generation of new alternatives to improve the current sub-unit vaccines in development. In the present report, the immunogenicity of the Spike RBD of SARS-CoV-2 formulated with an oil-in-water emulsion and a water-in-oil emulsion with squalene was evaluated in mice and hamsters. The RBD protein was expressed in insect cells and purified by chromatography until >95% purity. The protein was shown to have the appropriate folding as determined by ELISA and flow cytometry binding assays to its receptor, as well as by its detection by hamster immune anti-S1 sera under non-reducing conditions. In immunization assays, although the cellular immune response elicited by both adjuvants were similar, the formulation based in water-in-oil emulsion and squalene generated an earlier humoral response as determined by ELISA. Similarly, this formulation was able to stimulate neutralizing antibodies in hamsters. The vaccine candidate was shown to be safe, as demonstrated by the histopathological analysis in lungs, liver and kidney. These results have shown the potential of this formulation vaccine to be evaluated in a challenge against SARS-CoV-2 and determine its ability to confer protection.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Emulsões , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Esqualeno , Água
4.
Sci Rep ; 12(1): 10359, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725862

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.


Assuntos
COVID-19 , Vacinas Virais , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Camundongos , Vírus da Doença de Newcastle/genética , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas/genética
5.
Sci Rep ; 10(1): 8356, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433489

RESUMO

Pyrazinamide (PZA) is an antibiotic used in first- and second-line tuberculosis treatment regimens. Approximately 50% of multidrug-resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also PZA resistant. Despite the key role played by PZA, its mechanisms of action are not yet fully understood. It has been postulated that pyrazinoic acid (POA), the hydrolyzed product of PZA, could inhibit trans-translation by binding to Ribosomal protein S1 (RpsA) and competing with tmRNA, the natural cofactor of RpsA. Subsequent data, however, indicate that these early findings resulted from experimental artifact. Hence, in this study we assess the capacity of POA to compete with tmRNA for RpsA. We evaluated RpsA wild type (WT), RpsA ∆A438, and RpsA ∆A438 variants with truncations towards the carboxy terminal end. Interactions were measured using Nuclear Magnetic Resonance spectroscopy (NMR), Isothermal Titration Calorimetry (ITC), Microscale Thermophoresis (MST), and Electrophoretic Mobility Shift Assay (EMSA). We found no measurable binding between POA and RpsA (WT or variants). This suggests that RpsA may not be involved in the mechanism of action of PZA in Mycobacterium tuberculosis, as previously thought. Interactions observed between tmRNA and RpsA WT, RpsA ∆A438, and each of the truncated variants of RpsA ∆A438, are reported.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/metabolismo , Pirazinamida/análogos & derivados , Proteínas Ribossômicas/metabolismo , Antituberculosos/metabolismo , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Pirazinamida/metabolismo , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/genética
6.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649094

RESUMO

This report shows the whole-genome sequence of the multidrug-resistant Salmonella enterica subsp. enterica serovar Infantis strain FARPER-219. Antibiotic resistance genes are found mainly in the plasmid. Our findings show important genetic information that provides an understanding of the recent spread of this serotype in poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA